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Numerical Identification of a 
Spatially Varying Diffusion Coefficient 

By Gerard R. Richter 

Abstract. We consider the inverse problem of identifying a spatially varying diffusion 
coefficient on the basis of an observed solution to the forward problem. Under appropriate 
conditions, this inverse problem can be solved as a first order hyperbolic problem in the 
unknown coefficient. We provide a modified upwind difference scheme for this hyperbolic 
problem and prove that its convergence rate is 0(h) when certain conditions are met. 

1. Introduction. The partial differential equation 

au =V aVu + q 

is a basic governing equation in the analysis of aquifers (Bear [1]). The coefficients 
a and /3 are often taken as functions of the space variable x, and their identifica- 
tion, using observed u and q data, constitutes an important inverse problem in 
groundwater flow and oil reservoir simulation. 

We shall be concerned with the identification of the "transmissivity" a from 
observations taken under steady state conditions. The inverse problem then be- 
comes a linear first order hyperbolic equation in a: 

(1) L(a;u)-_Va. Vu+ aAu=f, xe 2, 

where f = -q. Assuming appropriate Cauchy data for a is available, and that the 
measurements are sufficiently definitive to permit approximation of V u, Au, and f 
in Q, one may attempt to identify a by solving (1) numerically. This hyperbolic 
problem has several distinguishing features: (i) it need not have a timelike direction 
(i.e., a fixed direction in which the tangent vector along characteristics always has a 
positive component), (ii) its coefficients are derivatives of the observed quantity u 
(a source of instability in practice), (iii) its first order term vanishes at extreme 
points of u. 

Several alternatives for the numerical solution of (1) have been proposed in the 
applied literature. Nelson [5] has devised a method for integrating the homoge- 
neous version of (1) (i.e., f = 0) along its characteristics, and Frind and Pinder [3] 
have developed a finite element Galerkin technique. A finite difference approach 
has also been proposed by Nutbrown [6]. 

In a companion paper [7], dealing with some mathematical aspects of the inverse 
problem, we showed that (1) may be solved uniquely for a assuming 

(2) inf {max[ IVul, Au] ) > 0 
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and that Cauchy data is available along the "inflow" portion of the boundary F of 
Q (essentially that portion of r where the outer normal derivative of u is negative). 
If (2) is not satisfied (which will be the case, for example, if u has both maxima and 
minima in Q), then the hyperbolic problem may not be solvable for all f. We also 
considered the following "test conditions" for observing a "forward" solution to 
the elliptic problem for (1): 

Inf f > 0, u = constant on F. 

Assuming the unknown a is positive, the resulting u then satisfies (2), and the 
corresponding hyperbolic problem (1) requires no Cauchy data for a. 

In the present paper, we present a modified upwind difference scheme which 
closely mimics the essential features of the continuous problem. The scheme is 
explicit in the direction of increasing grid values of u (the characteristics of (1) are 
curves of steepest ascent in u), and it is self-starting in the vicinity of a relative 
minimum of u (where (1) is degenerate and a is given by f/Au if Au # 0). In 
Sections 2 and 3, we describe the numerical method for the special case where Q is 
a unit square and establish its 0(h) convergence rate under the basic condition (2). 
It appears that the only other proof of convergence of a numerical scheme for (1) is 
that of Falk [2], which is based on a quite different nonlinear least squares 
approach. In Section 4, we extend the applicability of our numerical method and 
accompanying analysis to irregular domains. Then in Section 5, we show that the 
numerical method performs optimally under the "test conditions" alluded to in the 
previous paragraph. Finally, in Section 6, we present computational results for two 
test problems. 

2. The Discrete Problem. We shall develop our numerical method in the context 
of a two-dimensional problem in the unit square Q = (0, 1) x (0, 1). Its extension 
to more general domains will be seen in Section 4 to be quite straightforward. 

Our method utilizes a uniform grid 

(xi,yj) = (ih,jh), 0 < i, j < n + 1, h = +1. 

The set of interior grid points will be denoted by Qh, 

oh = { (Xi yj) I 1 < i j < n 

and for a grid quantity { vi,} defined over oh we define 

lIIvlIK= max Iv,I. 

We also define a discrete inflow boundary Fh . A grid point in F is a member of 'h 

if its nearest neighboring grid point in oh has a higher u value; e.g., (x,, y0) E Fh for 
i E 1, ... ., n} if u(x,, y1) > u(xi, y0). Henceforth, we shall denote grid values of 
u(x, y) and f(x, y) by uj and f,, respectively. 

We approximate the differential equation (1) by %h { a; u,j) = f,, 1 < i, j < n, 
where 

U.) a.a; ak ukj a. - a;,. U- u+ 
(3) h h h+ h 1 a.Hu. 

(4) Hu..=U u+ 1j + ui -1j + uj +I + U-I- 4u, 
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k is the first index of the minimum of { ui- 1j, uy, ui+ 1I}, 
( is the second index of the minimum of {uij,1, ui4, uij+1 }. 

Thus, k and / are in fact functions of the indices i and j, which we do not make 
explicit for the sake of notational simplicity. In the event of a tie for k or 1, its 
resolution will be seen as immaterial in what follows. 

Solving the equation et {a.j; u.) = fy for %, we obtain 

aki( 
Uy 

Uki) + ai Y-Ul+ hfu 

h h 
(6) au 

= 
# 

k2 h 
Y - U? 

) i 

which serves as the basis for several observations: 
(i) The difference scheme is explicit in the direction of increasing u. since a. is 

given in terms of akj and au, where Ukj and u%, are < ut,. Thus, the discrete solution 
is developed in a manner consistent with the characteristics of the continuous 
problem, which are curves of steepest ascent in u. 

(ii) If ui,..j is a relative minimum grid value of u, the associated a. is given by 

fi*,ij 
(7) Hu,,= 

This corresponds to the case of degeneracy in the continuous problem, Va * Vu + 
aAu = f, where if Au(P) = 0 and Au(P) -# 0, then 

(7) a(P) = A(P) 

(iii) Initial data for {a.) is required along Fh. 
(iv) The difference scheme is first order in h. Assuming a E C2(o), u E C3(i), 

the accuracy of the difference approximations to the various terms of L(a; u) = f 
is as follows: 

Term bound on error in corresponding difference approximation 

(a~u~Xx,,yh)ajjIaIk IIu,,jj0 + ik - i1ila..ji. IiiUxiioo+" 11k.xiio IUxxIIo4 (a.u.,Xx, Yj) I izX i c, + Il-il{Ia)7IIOo iiuyiioo + 211 a. 4 

(8) (ay yXxi, yj) h|~ 2[l.0 11 UY11. + A 1 {11s1 11.0-11 2 lu 
h 

11X 

a(uX. + y,Xxi,yj) hJjajjo[jju..x.lj + 11911X] 

3. Analysis of the Difference Scheme. In a previous paper [7], we considered the 
hyperbolic differential equation (1) under the basic condition (2). This condition 
guarantees the existence of a unique solution a assuming prescribed values along 
the inflow portion of F, and can be realized physically by observing u in the 
presence of a uniformly positive forcing function f. A condition equivalent to (2) is 
that the domain Q can be divided into subregions El, and Si2 in which jVul and Au, 
respectively, are uniformly positive: 

Q= Q1 U Q2, 

(9) |Vul > k1 > O inQ1, 
Au >k > 0 in IL 
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Our objective in this section is to establish the stability and convergence of the 
difference scheme for the unit square, 

(10) e f {aj; uy =fij, 1 < i,j < n, a given on Fh, 

under the assumption that (9) holds. Our analysis will be seen in Section 4 to be 
readily extendable to irregular domains. 

We begin the analysis by postulating a discrete analog of (9). We assume that the 
interior grid points oh can be divided into two sets Qh and Qh such that 

S2 Q 1 U Q2, ~ ~ ~ ~ 1 h= ohu 4h 

ma y - k Uy jUtl kh ) 
3 (11) maxt h h b, yi) e Oh 

Hu,, > k2 >O iyj) EQh 

We also define 

(12) q max , (_DV _} 
(xi~J)e~max{ 

h h 
' 

which may be regarded as a discrete analog of the quantity 

(13) q sup{ Au } 
S21 Ivul 

Note that just as (9) rules out the possibility of u having a relative maximum in 
Q, (11) precludes the possibility of a relative maximum Ui in Qh (i.e., one which is 
> its four nearest neighbors). We isolate those interior grid points, if any, for 
which the corresponding uij is a relative minimum and denote the resulting subset 
of 2 by *. 

At a point (x,yj*) E Oh the associated a value is given explicitly by (7). For 
any other (x, yj) E Qh, the value of a.1 is given in terms of one or two neighboring 
values, -akj and/or aci, associated with lower u values. We depict the local depen- 
dence of such a.y by means of arrows pointing along the corresponding segments 
from (xk, yj) and/or (x,, y,) to (x,, yj). A path like one of those shown in Figure 1 
which originates at rh or oh and proceeds through Qh in accordance with the 
resulting network of arrows will be termed an "admissible path". 

FIGURE 1 

Admissible paths 
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We observe that u is nondecreasing along an admissible path, and that any point 
(xi, yj) E- Q - Q' can be connected to Fh or Oh by at least one admissible path. 
Moreover, the set of all admissible paths to a given interior grid point describes the 
domain of dependence of the corresponding ai. 

We shall say that a segment of an admissible path from (xk, yj) or (xi, y1) to 
(xi, yj) E Oh is "aligned" if it makes an angle 7r/4 or less with the vector 

Vhu,j = (U h ' h ) 

Thus, a segment from (xk,yj), for example, to (xi, yj) is aligned if and only if 

Ukj < ui,. Note that u increases by at least hkh over each aligned segment of an 
admissible path, a key element in our subsequent analysis. 

We now establish a series of lemmas which will lead eventually to a proof of 
stability and convergence of the numerical solution under the conditions described 
in (11). 

LEMMA 1. If a, b, c, d are scalars and c, d have the same sign, 

a +b fa bl 
c +d max c'dJ) 

Proof. Suppose max{la/cl, jb/dl) = la/cl. Then jbl < jdl * [a/cl and 

l(a + b)/(c + d)l < (lal + jbj)/jc + dl < (lal + jdl * ja/cj)/(jcj + jdl) = la/cl. 
[-1 

LEMMA 2. If 6 0, '6 >O,AO>0, and Ai= 6(Ai-I +'), i= 1,2,.... 
then Ai < 6P'(A0 + i' 6). 

Proof. By induction on i. LO 

LEMMA 3. Assuming (11) holds and hqjh < 1, the discrete equations (10) have a 
unique solution { aij). 

Proof. Since the scheme is explicit, we need only show that the denominator D. 
in (6) is invariably nonzero. If (xi, yj) E Oh, then D,, > hkh > 0 by (11). Next, 
suppose (xi, yj) E Oh and consider the corresponding aligned segment to (xi, yj). In 
the event ukj < ui, this segment originates at (xk, yj) so that uij - ukj > hkh and 

Uj Fy Uk hHu. k( hh 

h [ ((uUJ -uk)/ h)J 

The same bound also holds in the case ui < ukj. Hence, Dij > 0 for all i, j E 

{1, ... , n), and the discrete solution is well defined. [1 

LEMMA 4. If (xi, yj) E Oh, then 

la.1v < max ( l akj l l ajzljS kh 9 

where, if k = i or 1 = j or both, the corresponding quantities I a ail are deleted. 

Proof. If k = i and 1 =j, aij is given by (7) and does not exceed IIf I I/k 
h in 

absolute value. Assuming k -# i and/or 1 =#J, we apply Lemma 1 to (6) with 
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b = hfi4, d = hHu,,. This gives 

Ia~~I _akj ___k + (U1 Uii) 
la.1l < maxl h 1 Z( h ) ffj 

rnaxtIakiI -Uk?u + U-Uii) 
Hu 

from which the desired result follows. L1 

LEMMA 5. Assuming hq h < 1, let p = 1/(1 - hq') and 71 = hIIf I I/kh. Then, if 

(xj,yj) E Uhl, 

(14) < max { I ail,I, p(lakjI + q)), Ukj < uil, 

max{lakjl, p(laill + q)}, ui < Ukj, 

where, if k = i or 1 = j, the corresponding I akj or I ailI is deleted. 

Proof. Again apply Lemma 1 to (6), this time with 

a = a4il U i) and C = if ukj < uil, or 

a = ak4j h ) and c= h if uil <Uk 

The desired result follows directly. L 

THEOREM 1. Assuming (11) holds and hqjh < 1, the discrete problem (10) has a 
unique solution {au) satisfying 

(15) I1a,I,11 < Ch(u) max maxIaj1, la ) + I | 
[ h kh' 2 

where 

Ch(u) umax{1, h}[1/hki, [u] sup u-inf u. 

Proof. What remains to be shown is the bound on a,j, . To obtain it, we define 
a new array {A.} as follows: 

max{ Ai,, p(Akj + I)), (x,,y) j , u41< ui; 

A.j = . max{Ak1, p(A,1 + q)}, (xi,yj) E Oh, Uil < Uk1; 
(16) ~~ lmax(Akj, pAi,}, q)),yj j ; Q 

It is easy to see from Lemmas 4 and 5 that Ayj > ja)j for (xh, y) U Fg. We 
will now show that 

(17) A~ A max{1Pmax} [max(mrax ' II o +m ) ] 

where m is the maximum possible number of aligned segments in any admissible 
path from eas U tse to (xL, yf). 
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To see that (17) is valid, we choose an arbitrary pair of indices io, jo E 

(1, 2, ... , n} and consider the corresponding quantity Aioo,. Assuming (xi0,y.y)d 
Oh (otherwise (17) holds trivially), A,,,,. is given in terms of a neighboring value A 
as 

p(Ai,J, + q) or Ai,j,, 

depending on whether or not the segment from (xi,,qy1) to (xio, yj) is aligned. 
Likewise, if (xi,, yj) E- Fh U QO, Ai,,, is given in terms of a neighboring value Ai2j2. 
Continuing in this way we may trace the value of Aio,o back to some A, . where 
(xi ,yj ) E- Fh U Qh. Note that the chain (xi, ,yj ) ... , (xio yjd) corresponds to an 
admissible path through Oh. Along each segment of this admissible path, the value 
of A. .k 

either changes to p(Ai,,, + q) < max{l , p} * (Aik ,,k + q) or remains the 
same, depending on whether the segment is aligned or not. Applying Lemma 2 over 
all possible paths from Fh U Q to (x, y1), we obtain (17). 

To complete the proof, we note that m. < [u]/hkh. This follows from the fact 
that an admissible path is one of increasing u, and each of its aligned segments 
contributes an increase of at least hkh. Combining the bound on m. with (17), we 
obtain the desired result. O 

The theorem we have just proved is predicated on the assumption that {ui,} 
satisfies the discrete condition (11). We wish now to recast the theorem in terms of 
the analogous conditions (9) for u(x, y), under which we shall establish the 
convergence of the numerical solution (a.)}. One additional definition is required: 

(18) C,(u) -max I. exp( lI]) } 
We relate kh, k2h qh and C h(u) to their continuous counterparts as follows: 

LEMMA 6. If (1) holds and u E C2(Q), then (11) is satisfied by {uu} for h 
sufficiently small with 

(i) kh > [k, - (h/2)max{lIuXxlxJ, IIuYYJL0}I/W. 
(ii) k h > k - o(h). 

Furthermore, 
(iii) If q, < 0, qh < O for h sufficiently small. If q, > 0, qh < V2i ql[l + o(h)]. 
(iV) Cj(u) < [C1(u)2] . [1 + o(h)]. 

Proof. (i) This follows from the formula 

UU h Uki = luxl(xi,yj) 4+ 
h 

UxA(iqYj)g (i E- (x,-,, xJ,l 

the analogous formula for (u. - ui,)/h, and the fact that max{ uxl, luyl} 
> jVul/V. 

(ii) Writing 

Hu Ui+ - 2u, + ui_lj ui,+, -2u,J + uij- 1 
Hu.. = 

and expanding each term as a linear Taylor polynomial plus remainder, we obtain 

Huij = uxx(,i yj) + uyy(xi, qj), (i E (xi- 1 xi+ 1) i j E (Yj- 1 Yj+ 1) 

Since the second derivative of u is continuous on the compact set Q, it is uniformly 
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continuous, so that Huij - AXu(xi,Y,)IIcy = o(h) as h - 0. The desired result fol- 
lows. 

(iii) If q, < 0, then Au > 0 throughout Q, and, for sufficiently small h, qh < 0 by 
(ii). For q, > 0, note that 

q=( max ()(xi(yj)a [I + o(h)] 
L(X,, yj) E=- max{|luxl, luyl} 

which leads to the desired result. 
(iv) If q, < 0, then by (iii), max{l, 1/(1 - hqh)} = 1 for h sufficiently small, 

which is consistent with the desired bound. For the case q, > 0, (i) and (iii) imply 
that 

C (u) < ( - hqXV ) (I + o(h)) < exp( kJ] ) (1 + o(h)). n 

We are now ready to establish the basic stability and convergence result for the 
numerical scheme. 

THEOREM 2. If u E C2(Q) satisfies the condition (9), then, for h sufficiently small, 
the discrete problem (10) has a unique solution { a.)} assuming prescribed values on Fh. 

It satisfies the bound 

(19) IlauIll, A4C(u)] [max{mraxIa.I { k ) + [k luf] l (1 + o(h)). 

Moreover, if u E C3(Q) and the solution a(x, y) of the continuous problem 
L(a; u) = f has two continuous derivatives in Q, then 

II a - a(xi, yj) II x = O(h) as h -0, 

assuming a. = a(xi, yj) on Fh. 

Proof The stability result follows from Theorem 1 and Lemma 6. The conver- 
gence rate can be established by noting that 

(20) {o ij- a(xi,yj); u.} = 0(h), 

in view of (8) and the assumed differentiability in a and u, and then applying the 
stability result to (20). O 

Note that Theorem 2 can easily be tailored to accomodate the case where one or 
the other of jVul or Au is uniformly positive throughout U. For example, if 

IVul > kI > 0 in U, we take k2 = o and Q2 = 0 in (19), thus obtaining 

(21) lIayllK < [ Cl(u)]] [ max |aI1 + 2[u] f Ixl[ I + o(h)]. 

Likewise, if Au > k2 > 0 in U, (19) becomes 

(22) llaijlloo < max mra^xIa,I, k P [ + o(h)] 

4. Extensions of the Numerical Scheme. In this section, we extend the applicabil- 
ity of the difference scheme to irregular domains and to problems in which the 
basic condition (2) is violated but Vu and /Au do not simultaneously vanish 
anywhere in U. 
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We first consider the case of an irregular domain Q which can be embedded in a 
larger domain ge over which u is defined and satisfies (2). We assume that 
dist{Q, Qe} > 0 and superimpose a uniform grid over Qe (cf. Figure 2). 

111 IIT T 1)1 T/l 7Qe 

FIGURE 2 

As before, we denote the set of interior grid points (xi, yj) E Q by Oh and apply 
the difference scheme (3)-(5) for all (xi, yj) E Oh. For grid points of Oh lying 
adjacent to F, (3)-(5) will involve grid values of u outside Q but such values are 
well defined if h < dist{Q, Qe}, which we assume to be the case. Values of a 
outside Q will also be required for the discretization at a point (xj, y1) E Qh situated 
next to an inflow portion of r. Such a value, ai + ij say, can be approximated by 
the value of a at the intersection of the line segment from (xi, yj) to (xi+,I yj) with 
F. This introduces an error 0(h) if a E C '(ne) 

Thus, the situation is essentially the same as before except that the "envelope" of 
Oh is no longer a square and the initial data has an 0(h) error. Theorems 1 and 2 
are readily seen to retain their applicability, and we conclude that the modified 
numerical scheme produces 0(h) convergence provided a E C2(Oe), U E C3(Oe) 
and u satisfies the basic condition (9) over ge. 

We can also accomodate the case where values of u outside Q are not available. 
Here we define rh as the union of all points of intersection of the grid lines x = xi, 
y = yj with F, and at each point (xi, yj) E Oh we base the discretization of 
L(a; u) = f on (xi, yj) and its four nearest neighbors in the set Oh u rh. This 
necessitates minor changes in (3)-(5) to account for the nonuniformity in the grid 
adjacent to F, but the convergence rate is still 0(h). 

We now indicate how the difference scheme can be applied to problems for 
which u fails to satisfy (2). Suppose first that 

inf {max[lVul, -Au]) > 0. 

The difference scheme can then be applied to 

L(a; v) = -f, v_-u, 

where v satisfies (2). Here the numerical scheme is propagated in the direction of 
decreasing u., and a must be specified along the discrete outflow boundary. 
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Next consider the more general situation where 

inf {max[lVul, ILuj]} > 0. 

Here L(a; u) = f will not in general be uniquely solvable for a [7]. However, we 
may partition Q into connected subdomains Q('), Q(2),... such that for each i 
either 

inf {max[lVul, Au]} > 0 or inf {max[|Vu|, -Au]} > 0. 
a(i) a(i) 

Assuming the availability of appropriate initial data, we may thus apply the 
numerical method locally within each Q(') under the assurance that it will perform 
optimally. Thus, we have essentially covered all situations except that in which Vu 
and Au vanish simultaneously somewhere in U. This is an especially ill-conditioned 
case where alal l does not depend continuously on llf ll. for the continuous 
problem L(a; u) = f [7], and we omit consideration of it. 

5. Test Conditions for Numerical Identification of the Diffusion Coefficient. In [7], 
we considered the following "test conditions" for observing a forward solution u of 
the elliptic problem for L(a; u) = f: 

(23) I. f > fmin > 0 

II. u = O onr. 
Assuming the underlying diffusion coefficient is positive, we showed that the 

resulting u has the following properties: 

(A) [Vul > I V%l" and/or Au > ( 
- Ofmin at each point of Q, any 9 E (0,1), 

(B) u <OinQ. 

Property (A) insures that the basic condition (9) is satisfied, while (B) implies that 
the resulting hyperbolic problem L(a; u) = f requires no Cauchy data. Here the 
characteristics of (1) originate at the minima of u within Q, where a is given as in 

(7'). 
We also impose the following regularity assumptions: 

III. a E C2(Q), f E C (a), and Q satisfies the exterior sphere condition 
(for any P E r there exists a ball BQ centered at Q E F2 such that 
Bq n Q = P). 

These regularity conditions insure (Gilbarg and Trudinger [4]) that 

(C) u E C3(Q) n C?(Q). 
Using properties (A), (B), (C), we now show that the numerical method performs 

optimally under the test conditions. 

THEOREM 3. If a forward solution u is observed under conditions I-III and the 
numerical scheme is applied to the resulting hyperbolic problem L(a u) = f, no initial 
data for a is required for the discrete problem, and over any domain Q, whose closure 
is contained within Q, 

IIa. - a (xi,yj)II. = O(h) as h ->O. 
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Proof. Property (B) insures that Jjh = 41, so that no initial data for a is required. 
For a given Q, define 

c = sup u(< 0), Qe = {x E jul(x) < }. 

Thus Q c U. c Q and u E C (9e) by property (C). Moreover, a. values at grid 
points in U.2 are not influenced by those in the remaining part of Q, since the latter 
are associated with higher u values. Thus, we may apply Theorem 2 over Qe 
separately and conclude that 0(h) convergence ensues there, hence also in its 
subset Q. El 

In the case of a u produced by the test conditions, the difference scheme 
generates initial data for a via (7) at the relative minimum grid values of u within 
U. The solution is then propagated outward in the direction of increasing u, no 
initial data for a being required along F. 

6. Some Test Computations. We list the results for two test problems over the 
unit square to which our numerical method has been applied. The forward 
solutions for the two problems are as depicted in Figures 3 and 4. In each case, a 
was chosen as e -Y and f was obtained from a and u. 

FIGURE 3 FIGURE 4 

u = (x + .2)2 + 4(y - 4)2 u = (x - .3)2 + 4(y .4)2 

In the first case, the discrete solution was developed from left to right and in 
opposite vertical directions away from the line y = .4 along each grid line x = xi. 
Cauchy data for a was supplied along the line x = 0. In the second case, the grid 
was scanned in an outward spiraling manner about the minimum grid value of u 
and no initial data for a is required. (In accomodating more complicated config- 
urations, a program which decided the scanning order internally would be of 
obvious value.) The computational results for the two cases are as follows, and the 
expected 0(h) convergence rate is apparent. 
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TABLE 1 
oo-norm errors for test cases 

n Case I Case II 

4 .043 .047 
8 .029 .032 

16 .018 .020 
32 .010 .011 
64 .005 .006 
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